
CSCB20 SQL Query Examples
1

Create table:
- Let’s say we want to create a customer table such that the relational schema is this

customer(​ID​, name, city, country, phone_number)
- The code is this: ​CREATE TABLE customer('ID' INTEGER PRIMARY KEY

AUTOINCREMENT, 'Name' TEXT, 'City' TEXT, 'Country' TEXT, 'Phone_Number'
TEXT);

Insert Into:
- To add information into a table, we use the insert into command.
- Right now, the customer table is empty, as shown below.

- If we run the below commands, we get the following table:

INSERT INTO customer(Name, City, Country, Phone_Number) VALUES("A",
"Toronto", "Canada", "416-223-2212");
INSERT INTO customer(name, city, country, phone_number) VALUES ('B',
'London', 'Canada', '416-774-2334');
INSERT INTO customer (name, city, country, phone_number) VALUES ('C', 'Berlin',
'Germany', '226-314-2234');
INSERT INTO customer(name, city, country, phone_number) VALUES ('D',
'Waterloo', 'Canada', '416-234-2133');

CSCB20 SQL Query Examples
2

Select:
- To get all the columns of the customer relation, we’d run this command:

SELECT * FROM customer;
The output table looks like this:

- To get the column “Country”, we’d run this command:

SELECT country FROM customer;
The output table looks like this:

- To get all the customers from Canada, we’d run this command:

SELECT * FROM customer WHERE country IS 'Canada';
The output table looks like this:

- To get the ID column from the table, but rename is customerID, we’d run this command:

SELECT ID AS CUSTOMERID FROM customer;
The output table looks like this:

Select Distinct:

- To get all the different countries in the column “Country”, we’d run this command:
SELECT DISTINCT country FROM customer;

CSCB20 SQL Query Examples
3

The output table looks like this:

Group by, Count, Having, Max, Min, Order By, Limit:

- If we want to get the number of customers in each country, we’d run this command:
SELECT COUNT(ID), Country FROM customer GROUP BY Country;
The output table looks like this:

- If we want to get how many customers are in Canada, we’d run this command:

SELECT COUNT(ID), Country FROM customer GROUP BY Country HAVING
Country IS 'Canada';
The output table looks like this:

- If we want to get the country that has the maximum number of customers, we’d run this

command: ​SELECT country FROM (SELECT COUNT(ID) mycount, Country FROM
customer GROUP BY Country) ORDER BY mycount DESC LIMIT 1;
The output table looks like this:

- If we want to get the country that has the least number of customers, we’d run this

command:
SELECT country FROM (SELECT COUNT(ID) mycount, country FROM customer
GROUP BY country) ORDER BY mycount LIMIT 1;
The output table looks like this:

Update:

- If we want to change the phone number of customer A to “416-223-2222”, we’d run this
command: ​UPDATE customer SET Phone_Number = '416-223-2222' where ID = 1;

CSCB20 SQL Query Examples
4

The customer relation now looks like this:

Suppose we have the following 2 relations:

 and
Cross Join:

- To get a cartesian product of the student and marks relations, I’d run the command:
SELECT * FROM Student CROSS JOIN Marks;
The output relation is this:

ID name address ID mark student_name class

1 A 48 XYZ Drive 1 85 A science

1 A 48 XYZ Drive 2 67 B math

1 A 48 XYZ Drive 3 90 C math

1 A 48 XYZ Drive 4 56 D math

1 A 48 XYZ Drive 5 85 E english

1 A 48 XYZ Drive 6 75 F french

2 B 10 ABC Road 1 85 A science

2 B 10 ABC Road 2 67 B math

2 B 10 ABC Road 3 90 C math

2 B 10 ABC Road 4 56 D math

2 B 10 ABC Road 5 85 E english

CSCB20 SQL Query Examples
5

2 B 10 ABC Road 6 75 F french

3 C 20 ABC Ave 1 85 A science

3 C 20 ABC Ave 2 67 B math

3 C 20 ABC Ave 3 90 C math

3 C 20 ABC Ave 4 56 D math

3 C 20 ABC Ave 5 85 E english

3 C 20 ABC Ave 6 75 F french

4 D 20 ABC Ave 1 85 A science

4 D 20 ABC Ave 2 67 B math

4 D 20 ABC Ave 3 90 C math

4 D 20 ABC Ave 4 56 D math

4 D 20 ABC Ave 5 85 E english

4 D 20 ABC Ave 6 75 F french

5 E 3452 XYZ Drive 1 85 A science

5 E 3452 XYZ Drive 2 67 B math

5 E 3452 XYZ Drive 3 90 C math

5 E 3452 XYZ Drive 4 56 D math

5 E 3452 XYZ Drive 5 85 E english

5 E 3452 XYZ Drive 6 75 F french

7 G 1234 X Ave 1 85 A science

7 G 1234 X Ave 2 67 B math

7 G 1234 X Ave 3 90 C math

7 G 1234 X Ave 4 56 D math

7 G 1234 X Ave 5 85 E english

7 G 1234 X Ave 6 75 F french

CSCB20 SQL Query Examples
6

Left Join:
- Running the command ​SELECT * FROM student LEFT JOIN marks ON student.id =

marks.id;​ gets me the following relation:

- Running the command ​SELECT * FROM marks LEFT JOIN student ON student.id =

marks.id;​ gets me the following relation:

Inner Join:

- Running the command ​SELECT * FROM marks INNER JOIN student ON student.id =
marks.id;​ gets me the following relation:

CSCB20 SQL Query Examples
7

Suppose we have the following 2 relations:

 and
Union:

- If I run the command ​SELECT * FROM A UNION SELECT * FROM B;​ I’d get this table:

Intersect:

- If I run the command ​SELECT * FROM A INTERSECT SELECT * FROM B;​ I’d get this
table:

Except:

- If I run the command ​SELECT * FROM A EXCEPT SELECT * FROM B;​ I’d get this
table:

CSCB20 SQL Query Examples
8

Create View:
- Creating views can be used to break long SQL queries into smaller pieces.
- E.g. Suppose we want to find the names of all students with an average greater than or

equal to 85. The relational schemas are given below and the primary ids are underlined:
student(​id​, name)
marks(​id​, average)

To do this using views, we would run the following commands:
CREATE VIEW v1 AS SELECT ID FROM marks WHERE Average >= 85;
SELECT S.name FROM Student S NATURAL JOIN v1;

Suppose we tested the above 2 lines on these 2 relations:

and

The first line, ​CREATE VIEW v1 AS SELECT ID FROM marks WHERE Average >=
85;​, would create a view shown below:

The second line, ​SELECT S.name FROM Student S NATURAL JOIN v1;​, would create
the output table shown below:

